If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6j^2+3j+7=0
a = -6; b = 3; c = +7;
Δ = b2-4ac
Δ = 32-4·(-6)·7
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{177}}{2*-6}=\frac{-3-\sqrt{177}}{-12} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{177}}{2*-6}=\frac{-3+\sqrt{177}}{-12} $
| 4.25x+45=400 | | 3=3t | | p/9+71=75 | | 6x=108, | | 19t-14=18t | | 9.3=1.5n | | 32x-14=-3(x-13) | | 2(x-1)+x=16 | | x^2-55x=56 | | x+7.2=14.3 | | 7(5x+7)=259 | | 54a+2=70 | | 3p-2p=5 | | 4x=32.1 | | 6(x+4)=3x3 | | 11y-63= | | 5(8x-11)=305 | | 3.4+m-1.3=6.8 | | .75x=0.4x+100 | | 6a=26=4a | | -6v=-10-5v | | -4y=-2y+4 | | w/6+5/8=−1/3/8 | | 4(5x-6)=156 | | 14/55=p/100 | | 2z^2+6z=180 | | -6h^2-h+3=0 | | 4(8x+7)=188 | | g÷1/5=11/4 | | 3.6=2p | | 12.5d=13.3d+15.12 | | 4t-4=t^2 |